1,463 research outputs found

    Polynomial-time Computation of Exact Correlated Equilibrium in Compact Games

    Full text link
    In a landmark paper, Papadimitriou and Roughgarden described a polynomial-time algorithm ("Ellipsoid Against Hope") for computing sample correlated equilibria of concisely-represented games. Recently, Stein, Parrilo and Ozdaglar showed that this algorithm can fail to find an exact correlated equilibrium, but can be easily modified to efficiently compute approximate correlated equilibria. Currently, it remains unresolved whether the algorithm can be modified to compute an exact correlated equilibrium. We show that it can, presenting a variant of the Ellipsoid Against Hope algorithm that guarantees the polynomial-time identification of exact correlated equilibrium. Our new algorithm differs from the original primarily in its use of a separation oracle that produces cuts corresponding to pure-strategy profiles. As a result, we no longer face the numerical precision issues encountered by the original approach, and both the resulting algorithm and its analysis are considerably simplified. Our new separation oracle can be understood as a derandomization of Papadimitriou and Roughgarden's original separation oracle via the method of conditional probabilities. Also, the equilibria returned by our algorithm are distributions with polynomial-sized supports, which are simpler (in the sense of being representable in fewer bits) than the mixtures of product distributions produced previously; no tractable algorithm has previously been proposed for identifying such equilibria.Comment: 15 page

    Diversity beats strength?:a hands-on experience with 9x9 go (Demonstration)

    Get PDF
    Team formation is a critical step in deploying a multi-agent team. In some scenarios, agents coordinate by voting continuously. When forming such teams, should we focus on the diversity of the team or on the strength of each member? Can a team of diverse (and weak) agents outperform a uniform team of strong agents? In this demo, the user will be able to explore these questions by playing one of the most challenging board games: Go

    Outsourcing: Overview and Trends

    Get PDF
    Outsourcing is a valuable strategy for firms to gain more benefits from the global supply chain. Outsourcing can be defined as a business agreement in which a firm is contracting out certain existing parts of the firm to either domestic and/or international third parties. In this chapter, we give an overview to the benefits and disadvantages of outsourcing. We also discuss recent trends in outsourcing; in particular, with the benefit of technology development, robots are starting to join in outsourcing

    Towards a science of security games

    Get PDF
    Abstract. Security is a critical concern around the world. In many domains from counter-terrorism to sustainability, limited security resources prevent complete security coverage at all times. Instead, these limited resources must be scheduled (or allocated or deployed), while simultaneously taking into account the impor-tance of different targets, the responses of the adversaries to the security posture, and the potential uncertainties in adversary payoffs and observations, etc. Com-putational game theory can help generate such security schedules. Indeed, casting the problem as a Stackelberg game, we have developed new algorithms that are now deployed over multiple years in multiple applications for scheduling of secu-rity resources. These applications are leading to real-world use-inspired research in the emerging research area of “security games”. The research challenges posed by these applications include scaling up security games to real-world sized prob-lems, handling multiple types of uncertainty, and dealing with bounded rationality of human adversaries.

    Diverse randomized agents vote to win

    Get PDF
    We investigate the power of voting among diverse, randomized software agents. With teams of computer Go agents in mind, we develop a novel theoretical model of two-stage noisy voting that builds on recent work in machine learning. This model allows us to reason about a collection of agents with different biases (determined by the first-stage noise models), which, furthermore, apply randomized algorithms to evaluate alternatives and produce votes (captured by the second-stage noise models). We analytically demonstrate that a uniform team, consisting of multiple instances of any single agent, must make a significant number of mistakes, whereas a diverse team converges to perfection as the number of agents grows. Our experiments, which pit teams of computer Go agents against strong agents, provide evidence for the effectiveness of voting when agents are diverse

    An extended study on addressing defender teamwork while accounting for uncertainty in attacker defender games using iterative Dec-MDPs

    Get PDF
    Multi-agent teamwork and defender-attacker security games are two areas that are currently receiving significant attention within multi-agent systems research. Unfortunately, despite the need for effective teamwork among multiple defenders, little has been done to harness the teamwork 1 research in security games. The problem that this paper seeks to solve is the coordination of decentralized defender agents in the presence of uncer-tainty while securing targets against an observing adversary. To address this problem, we offer the following novel contributions in this paper: (i) New model of security games with defender teams that coordinate under uncertainty; (ii) New algorithm based on column generation that uti-lizes Decentralized Markov Decision Processes (Dec-MDPs) to generate defender strategies that incorporate uncertainty; (iii) New techniques to handle global events (when one or more agents may leave the system) during defender execution; (iv) Heuristics that help scale up in the num-ber of targets and agents to handle real-world scenarios; (v) Exploration of the robustness of randomized pure strategies. The paper opens the door to a potentially new area combining computational game theory and multi-agent teamwork.
    corecore